Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Energy Fuels ; 36(23): 14292-14303, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36483577

RESUMO

Organic solid wastes such as sewage sludge are potential feedstocks for the production of drop-in biofuels. Hydrothermal liquefaction (HTL) is a process that converts the wet sewage sludge into an organic biocrude. To fulfill industrial fuel standards, the considerable heteroatom content of the biocrude needs to be lowered by downstream processes. Nitrogen (N) contained in several compounds poses a challenge and yet, the complex chemical composition of HTL-biocrude samples has hindered detailed analysis and understanding. In particular, N-containing aromatic substances appear very persistent in biocrude. In the present work, two alkaline (NaHCO3 and NaOH) and one acidic (HCL) aqueous solutions were subsequently applied to extract and recover polar N-containing compounds from the biocrude matrix with an N-content of 3.8 wt %. Gas chromatography-mass spectrometry, atmospheric pressure chemical ionization in positive mode, and Fourier transform ion cyclotron resonance mass spectrometry were applied for their characterization and results show that a large share of N-compounds with an aromatic, pyridinic structure was found in the acidic extracted fraction with an N-content of 9.5 wt %. Aliphatic N-compounds were less affected by the separation and ended in the residual fraction. N-compounds with multiple oxygen functionalizations are enriched in the alkaline extracted fractions. This showed that N-compounds with an aromatic structure are strongly affected by polar groups and can potentially be extracted by downstream processes with appropriate solvents.

2.
Energy Fuels ; 36(19): 12010-12020, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36250135

RESUMO

Hydrothermal liquefaction (HTL) can thermochemically transform sewage sludge into a biocrude with high energy content, high chemical complexity, and high O and N content. The development of an efficient upgrading process for such complex feedstocks necessitates detailed knowledge of the molecular composition and the specific heteroatom-containing compounds to understand and optimize the hydrotreating reactions. In this study, we present the upgrading of sewage sludge-derived HTL biocrude via a two-stage hydrotreatment process and perform advanced chemical characterization of the feedstock, intermediate, and final upgraded products with gas chromatography-mass spectrometry (GC-MS) and Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). We show that hydrotreatment significantly improves the quality of the oil, primarily succeeding in cracking the heavy molecules and removing the sulfur- and oxygen-containing components. FTICR-MS analysis shows that the HTL biocrude has a high concentration of fatty acid amides that readily lose their oxygen and nitrogen during hydrotreating and are converted into saturated hydrocarbons, whereas the aromatic OxNy compounds are converted into N1 and N2 classes, which are more resistant to hydrotreating. We also demonstrate that the upgraded HTL oil can be successfully blended with intermediate refinery streams, such as vacuum gas oil (VGO), for further co-processing to in-spec fuels in conventional processes. This provides an alternative route to introduce renewable carbon in existing fossil-based refineries.

3.
J Environ Manage ; 288: 112381, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33823438

RESUMO

Phytoremediation is a sustainable technology capable of efficiently removing low or moderate contamination. However, complex pollution conditions can drastically reduce efficiency, as plants can show themselves sensitive to organic contaminants, growing slowly and thus impairing metals' absorption. In cases where the action of indigenous bacteria degrading hydrocarbons and promoting plant growth is not sufficient, more sophisticated strategies are necessary. This investigation aims to evaluate the effectiveness of a train of technologies that sees advanced phytoremediation in combination with other biological approaches to remediate soil from a disused industrial area contaminated by N-containing compounds, alkyl aromatic hydrocarbons, copper, and nickel. In particular, a stepwise procedure was used with a pre-treatment (landfarming and bioaugmentation), significantly affecting the soil's fertility, increasing germinability up to 85%, and allowing the plants to extract the metals adequately. Furthermore, with EDTA as a mobilizing agent, nickel absorption has increased up to 36% in Helianthus annuus and up to 88% in Zea mays. For copper, an increase of up to 262% in Helianthus annuus and up to 202% in Zea Mays was obtained. Analysis through Fourier-Transform Ion Cyclotron Resonance Mass Spectrometry highlighted the biodegradation of some of the N-containing compounds recording, after phytoremediation, a decrease of up to almost 90%. Metagenomic analysis of the soil showed a typical microbial population of oxidizing hydrocarbon strains with a prevalence of the Nocardiaceae family (43%). The results obtained appear to confirm the usefulness of the approach developed, and the employed cutting-edge analytical techniques allowed a top-notch characterization of the remediation scenario.


Assuntos
Helianthus , Poluentes do Solo , Biodegradação Ambiental , Hidrocarbonetos , Solo , Poluentes do Solo/análise
4.
ACS Omega ; 2(8): 4347-4355, 2017 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-31457727

RESUMO

The development and widespread application of organic electronic devices require the availability of simple and cost-effective suitable materials. In this study, the preparation of a new class of conjugated compounds on the basis of a dithienocyclohexanone (DTCH) core is reported. Several synthetic strategies for the preparation of dialkyl DTCH derivatives are explored, with special emphasis on the establishment of a sustainable synthetic access. Two successful synthetic pathways, both consisting of five steps, are identified: the first one featuring readily available 3-thiophenecarboxaldeyde and the second one 3-ethynylthiophene as the starting materials. Both procedures are characterized by reasonably high overall yields (over 30%) and remarkably low E factors (<400). Preliminary evidences of the use of such building blocks in the micellar Suzuki-Miyaura cross-coupling reactions leading to promising molecular semiconductors are also given. Moreover, on a small molecule containing DTCH moiety, solar cell performance was investigated.

5.
ChemSusChem ; 10(1): 171-181, 2017 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-28004532

RESUMO

Binary and ternary mixtures of cellulose, bovine serum albumin (BSA) and tripalmitin, as biomass reference compounds for carbohydrates, proteins and triglycerides, respectively, were treated under hydrothermal liquefaction (HTL) conditions to describe the main reaction pathways involved in the process of bio-oil production from municipal organic wastes. Several analytical techniques (elemental analysis, GC-MS, atmospheric-pressure photo-ionisation high-resolution Fourier transform ion cyclotron resonance mass spectrometry, and 13 C cross-polarisation magic-angle spinning NMR spectroscopy) were used for the molecular-level characterisation of the resulting aqueous phase, solid residue and bio-oil, in particular. The main reaction pathways led to free fatty acids, fatty acid amides, 2,5-diketopiperazines and Maillard-type compounds as the main components of the bio-oil. The relationship of such compounds to the original components of the biomass was thus determined, which highlights the fate of the heteroatom-containing molecules in particular. Finally, the molecular composition of the bio-oils from our reference compounds was matched with that of the bio-oil from municipal organic waste biomass by comparing their high-resolution Fourier transform ion cyclotron resonance mass spectra, and we obtained a surprisingly high similarity. Hence, the ternary mixture acts as a reliable biomass model and is a powerful tool to clarify the degradation mechanisms that occur in the biomass under HTL treatment, with the ultimate goal to improve the HTL process itself by modulating the input of the organic starting matter and then the upgrading steps to bio-fuels.


Assuntos
Biocombustíveis , Biomassa , Óleos/química , Compostos Orgânicos/química , Resíduos , Animais , Bovinos , Celulose/química , Cinética , Soroalbumina Bovina/química , Solubilidade , Triglicerídeos/química , Água/química
6.
Inorg Chem ; 53(10): 4861-71, 2014 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-24779510

RESUMO

Lanthanides are easily extracted as N,N-dibutylcarbamato complexes from aqueous solutions of their chlorides into heptane solutions of dibutylamine saturated with CO2. The products are recovered in high yields and are soluble in hydrocarbons. The derivatives [Ln(O2CNBu2)3]n [Ln = Nd (1), Eu (2), Tb (3)], [NH2Bu2]2[Ln4(CO3)(O2CNBu2)12] [Ln = Tb (4), Sm (5), Eu (6)], and [Sm4(CO3)(O2CNBu2)10], 7, have thus been obtained. The crystal and molecular structure of 4 has been solved; the samarium and europium complexes 5 and 6 were found to be isostructural. Mass spectra of the complexes 1-3, 4, and 7 (in MeCN/toluene) reveal that equilibria are present in solution. Compound 2 has been reacted in toluene with NHBz2 in the presence of CO2 affording [NH2Bz2][Eu(O2CNBz2)4], 8, through a ligand exchange process. By thermal treatment, 8 afforded [Eu(O2CNBz2)3]n, 9. With a similar procedure [Sm(O2CNBz2)3]n, 10, was obtained from 5. According to the photoluminescence study carried out on solid samples of 2, 4, 5, 7, and 8, the metal centered f-f transitions represent the only effective way to induce lanthanide luminescence in these complexes.

7.
ChemSusChem ; 6(1): 160-7, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23139164

RESUMO

Solid wastes of organic origins are potential feedstocks for the production of liquid biofuels, which could be suitable alternatives to fossil fuels for the transport and heating sectors, as well as for industrial use. By hydrothermal liquefaction, the wet biomass is partially transformed into a water-immiscible, oil-like organic matter called bio-oil. In this study, an integrated NMR spectroscopy/mass spectrometry approach has been developed for the characterization of the hydrothermal liquefaction of bio-oil at the molecular level. (1)H and (13)C NMR spectroscopy were used for the identification of functional groups and gauging the aromatic carbon content in the mixture. GC-MS analysis revealed that the volatile fraction was rich in fatty acids, as well as in amides and esters. High-resolution Fourier-transform ion cyclotron resonance mass spectrometry (FTICR-MS) has been applied in a systematic way to fully categorize the bio-oil in terms of different classes of components, according to their molecular formulas. Most importantly, for the first time, by using this technique, and for the liquefaction bio-oil characterization in particular, FT-MS data have been used to develop a methodology for the determination of the aromatic versus aliphatic carbon and nitrogen content. It is well known that, because they resist hydrogenation and represent sources of polluting species, both aromatic molecules and nitrogen-containing species raise concerns for subsequent upgrading of bio-oil into a diesel-like fuel.


Assuntos
Biocombustíveis/análise , Resíduos Sólidos , Amidas/análise , Cromatografia Gasosa , Ácidos Graxos não Esterificados/análise , Temperatura Alta , Espectroscopia de Ressonância Magnética , Espectrometria de Massas/métodos , Óleos , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...